
LITERATURE CITED 

i. H. Schlichting, Boundary Layer Theory, 6th ed., McGraw-Hill (1968). 

2. J. Bear, D. Zaslawsky, and S. Irmey, Physico-Mathematical Fundamentals of Water Filtra- 
tion [Russian translation], Mir, Moscow (1971). 

3. Yu. H. Bychkov, Visualization of Thin Flows of Incompressible Liquids [in Russian], 
Shtiintsa, Kishinev (1980). 

4. Yu. M. Bychkov, Hydrodynamics of Thin Flows of Incompressible Liquids [in Russian], 
Shtiintsa, Kishinev (1981). 

5. Kh. A. Rakhmatulin, "Fundamentals of gasdynamics of interpenetrating flows of compres- 
sible media," Prikl. Mat. Mekh., 20, No. 2 (1956). 

6. R. I. Nigmatulin, Fundamentals of the Mechanics of Heterogeneous Media [in Russian], 
Nauka, Moscow (1978). 

7. N. C. Brinkman, "A calculation of the viscous force exerted by flowing fluid on a dense 
swarm of particles," Appl. Sci. Res., AI, No. 1 (1949). 

8. P. Roach, Computational Hydrodynamics [Russian translation], Mir, Moscow (1980). 
9. A. D. Gosmen, V. M. Pan, A. K. Ranchel, et al., Numerical Methods for Study of Viscous 

Liquid Flows [Russian translation], Mir, Moscow (1972). 
i0. B. S. Petukhov, Heat Exchange and Resistance in Laminar Fluid Flow in Tubes [in Russian], 

inergiya, Moscow (1967). 

EFFECT OF VISCOSITY AND HEAT CONDUCTION ON THE ASCENT OF A THERMAL 

UNDER THE INFLUENCE OF BUOYANCY 

N. A. Kudryashov and V. M. Prostokishin UDC 532.517.4 

The ascent of a heated mass of air (thermal) in the earth's atmosphere under the influ- 
ence of buoyancy is a classical problem [i]. The study [2] examined the motion of a vortex 
ring without consideration of its internal structure. The approximation yielded basic inte- 
gral characteristics describing the evolution of a rising cloud. The motion of a heated air 
mass in the atmosphere was analyzed in [3] without consideration of viscosity and heat con- 
duction. The investigations [4-7] studied convective motion of a thermal on the basis of 
numerical solution of two-dimensional Navier--Stokes equations with constant values of the 
viscosity coefficient and thermal conductivity. The present study shows how the temperature 
dependence of the viscosity coefficient and thermal conductivity affect the ascent of a cloud 
of heated gas under the influence of buoyancy. 

Let a spherical region Do of heated gas of radius Ro be located at the altitude Ho in 
the earth's atmosphere at the initial moment of time. The gas has been heated to the tempera- 
ture T~ > To (To is the temperature of the undisturbed air). The gas pressure inside the 
spherical region will be assumed to be equal to the pressure in the undisturbed atmosphere 
at the corresponding altitude. Buoyancy will cause the heated gas, initially at rest, to rise 
and bring into motion new layers of the atmosphere. This is accompanied by convective and 
diffusive mixing of the heated and cold air, which equalizes the temperature and density of 

the gas inside and outside the perturbed region [8, 9]. 

The motion of the air during ascent of the thermal is described by the complete system 
of Navier--Stokes equations for a viscous compressible heat-conducting gas. This system ap- 
pears as follows in a cylindrical coordinate system written in matrix form for the dimension- 

less variables 

where, 

O--L + A J =  F, A = A~ + A 2 + A 3 + A 4 ,  Ot 
(i) 

is the vector of the unknown variables, while the differential matrix opera- 
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tors Al, into which the operator A is broken down, are written in the form 
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The components of the vector of the right sides of Eq. 

(0) 
(1)  F F~ 

FT 

containing mixed 

derivatives and external forces in the equations of motion and the dissipative function in 
the energy equation, have the form 

F u 

i 

The boundary conditions for 
D ~D 0 are as follows: 
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system (i) on the boundary F of the theoretical region 

~(~, r~ t) = v(z, ~, t) = 0, p(x, ~, t) = oo(x), 

T(x~ r, t) = T a(x),  (x, r) ~ F, r =~ 0, 
Ou ap ~T 
ar = ar ~r v = O~ r = O. 

(z )  

At the initial moment of time (t = 0) the velocity, density, and temperature of the air 
in the theoretical region are given in the form 

u(x, r, t = O) = v(x, r, t = O) = 0 ,  (x, r) ~ D ,  

I~ a (z) T~ (~) 
p (x, r, t = 0) = / !rl--(x'--r7 ' (x, r) ~ Do, (3) 

[ p. (x), (x, r) ~ D\De ,  

T ( x , r , t = 0 ) = / T l ( x ' r ) '  ( x , r ) ~ D o ,  
[ Ta(x) ,  ( z , r ) ~ D \ D  o. 

Inproblem (1)-(3)we introduced dimensionless variables and parameters using the follow- 
ing formulas (the primes were omitted in (1)-(3)): 
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(4) 

where x and r are coordinates; t is time; D is the density of the air; u and v are the verti- 
cal and radial components of velocity; ~ and k are the viscosity coefficient and thermal con- 
ductivity; T is temperature; y = Cp/C V is the ratio of the specific heats of the air; the in- 
dex a pertains to quantities in the undisturbed atmosphere, while the index 0 pertains to quan- 

tities at the height Ho. 

The temperature dependence of absolute viscosity was taken in the form [i0] ~ = ~o(T/To) ~. 

Problem (1)-(3) was solved by the numerical method of breaking a problem down according 
to physical processes and spatial directions [ii]. The difference scheme was constructed rela- 
tive to changes in the increments of the grid functions on adjacent time layers in accordance 

with the recommendations made in [12]. 

Numerical solution of problem (1)-(3) yielded space--time dependences of the fields of 

density, velocity components, and temperature for different ~. 

As was shown in [8], the formation of a vortex ring from a spherical region of light gas 
is due mainly not to the motion of the gas comprising the thermal but to flows of denser sur- 
rounding layers of air. Here, however, the flow of initially undisturbed atmospheric air in- 
to the region of reduced pressure on the wake of the rising thermal depends considerably on 
the mean rate of ascent of the thermal. The mean velocity is determined by the difference in 
the densities of the gas inside and outside the heated region and, as the completed calcula- 
tions showed, also depends on the values of the viscosity coefficient and thermal conductiv- 
ity of the gas. In the case of high values of viscosity, friction between the more heated 
central layers of the thermal and its less heated peripheral layers impedes an increase in 
the mean rate of ascent of the cloud. This is illustrated by Figs. 1 and 2, which show iso- 
therms and the velocity field for times t = 0.5 and 0.75, respectively. The right sides of 
the figures show isotherms and the velocity field with ~ = 0.7, while w = 0 for the left 
sides. The isotherms correspond to the following temperatures: curve i) 1.05To; 2) 2.0To; 
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3) 3.0To; 4) 5.0To. The directions and lengths of the arrows indicate the directions and 

magnitudes of the local velocity of the gas. It is apparent from Figs. 1 and 2 that despite 
the qualitative agreement between the patterns of air motion, there are important quantita- 
tive differences which can be attributed to allowing for the temperature dependence of the 

viscosity coefficient and thermal conductivity. Allowing for these dependences enhances the 
effect of viscosity on air motion in the thermal and leads to a decrease in its rate of as- 
cent. Here, there is a corresponding slowing of the transformation of the spherical volume 
filled with heated gas into a vortex ring. 

The completed calculations show that viscosity has a significant effect on the convec- 
tive rise of a heated air mass and on the rate of formation of the vortex ring. In numerical- 
ly modeling the convective motion of a heated air mass, it is necessary to make specific allow- 
ance for the temperature dependence of the viscosity coefficient and thermal conductivity of 
the gas. 

The authors thank participants in the seminar conducted by E. E. Lovetskii for their 
useful discussion of the work. 
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